Entity-Based SEO

Entity-Based SEO for Large-Scale Site Implementation

Introduction: Why Entity-Based SEO Is Essential for Scale

Large-scale websites face unprecedented technical challenges in today’s rapidly evolving search landscape. Search engines have shifted from simple keyword-matching to sophisticated entity recognition, understanding the relationships between real-world objects and concepts. For enterprise-level sites with thousands or millions of pages—especially those offering digital marketing services —manual entity extraction and schema markup are not just inefficient—they’re impossible.

Automating entity extraction and programmatic schema implementation is now critical for achieving scale, consistency, and superior search performance. According to Google, schema-enhanced results can increase click-through rates by up to 30%, yet fewer than one-third of websites, including many in the digital marketing space, implement structured data effectively. This gap presents a major challenge and a significant opportunity for large-scale sites

Key Technical Challenges in Entity-Based SEO at Scale

Large-scale websites must overcome several critical obstacles when implementing entity extraction and schema markup:

  1. Processing Efficiency: Entity extraction across millions of content pieces demands highly optimized, parallelized computational approaches.
  2. Accuracy at Scale: Maintaining high precision and recall across diverse content categories is essential.
  3. Contextual Understanding: Systems must distinguish between mere mentions and actual topic entities.
  4. Cross-Language Support: Entity recognition must function across multiple languages and markets.
  5. Schema Mapping Complexity: Correctly associating extracted entities with the appropriate schema.org vocabulary is non-trivial.

This article presents robust technical frameworks, code implementations, and architectural patterns to address these challenges systematically.

Technical Architecture for Automated Entity Extraction

Entity Extraction Pipeline Overview

A robust entity extraction system for large-scale sites requires a comprehensive, modular pipeline:

Content Source → Text Extraction → Preprocessing → Named Entity Recognition (NER) → Entity Disambiguation → Entity Classification → Entity Storage → Schema Mapping → JSON-LD Generation → Deployment

Let’s break down each component:

Text Extraction and Preprocessing

For HTML content, effective text extraction must preserve contextual hierarchy. Preprocessing must address:

  1. Text Normalization: Unicode normalization and whitespace standardization.
  2. Linguistic Preprocessing: Tokenization, lemmatization, and part-of-speech tagging.
  3. Content Segmentation: Sentence boundary detection and section identification.

High-performance preprocessing leverages concurrent processing:

python

def extract_content_with_context(html_document):

    “””

    Extract text content while preserving contextual hierarchy.

    Returns a structured document with hierarchical context.

    “””

    soup = BeautifulSoup(html_document, ‘html.parser’)

    document = {

        ‘title’: soup.title.string if soup.title else ”,

        ‘headings’: {

            ‘h1’: [h.get_text() for h in soup.find_all(‘h1’)],

            ‘h2’: [h.get_text() for h in soup.find_all(‘h2’)],

            ‘h3’: [h.get_text() for h in soup.find_all(‘h3’)],

        },

        ‘paragraphs’: [p.get_text() for p in soup.find_all(‘p’)],

        ‘lists’: [{‘type’: ul.name, ‘items’: [li.get_text() for li in ul.find_all(‘li’)]} 

                  for ul in soup.find_all([‘ul’, ‘ol’])],

        ‘tables’: extract_tables(soup)

    }

    return document

Named Entity Recognition (NER) Implementation

Optimal large-scale NER combines multiple approaches:

  1. Dictionary-Based Matching: High-precision entity recognition using gazetteer lookups.
  2. Statistical Models: Machine learning approaches like CRF or BiLSTM-CRF.
  3. Transformer-Based Models: Advanced models such as BERT or RoBERTa.
  4. Rule-Based Systems: Regular expressions and pattern matching for structured entities.

Concurrent Preprocessing Example:

python

def preprocess_document_concurrent(document, nlp_pipeline, max_workers=4):

    “””

    Parallel document preprocessing using concurrent.futures.

    “””

    processed_sections = {}

    with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:

        future_title = executor.submit(nlp_pipeline, document[‘title’])

        heading_futures = {

            level: [executor.submit(nlp_pipeline, heading) for heading in headings]

            for level, headings in document[‘headings’].items()

        }

        paragraph_futures = [

            executor.submit(nlp_pipeline, paragraph)

            for paragraph in document[‘paragraphs’]

        ]

        processed_sections[‘title’] = future_title.result()

        processed_sections[‘headings’] = {

            level: [future.result() for future in futures]

            for level, futures in heading_futures.items()

        }

        processed_sections[‘paragraphs’] = [future.result() for future in paragraph_futures]

    return processed_sections

Hybrid NER Class Example:

python

class HybridEntityRecognizer:

    def __init__(self, models_config):

        self.transformer_model = self._load_transformer_model(

            models_config[‘transformer’][‘model_name’],

            models_config[‘transformer’][‘config’]

        )

        self.statistical_model = self._load_statistical_model(

            models_config[‘statistical’][‘model_path’]

        )

        self.gazetteer = self._load_gazetteer(

            models_config[‘gazetteer’][‘entity_lists’]

        )

        self.regex_patterns = self._compile_regex_patterns(

            models_config[‘regex_patterns’]

        )

    def recognize_entities(self, processed_text, confidence_threshold=0.75):

        transformer_entities = self._get_transformer_entities(processed_text)

        statistical_entities = self._get_statistical_entities(processed_text)

        gazetteer_entities = self._get_gazetteer_entities(processed_text)

        regex_entities = self._get_regex_entities(processed_text)

        all_entities = self._consolidate_entities([

            transformer_entities,

            statistical_entities,

            gazetteer_entities,

            regex_entities

        ])

        return [e for e in all_entities if e[‘confidence’] >= confidence_threshold]

Entity-Based SEO

Clickmasters Digital Marketing Agency logo 3

Why Tailored Entity-Based SEO is Critical for Large-Scale Sites

📩 Improve search precision with entity-based content structuring
📈 Scale SEO performance across large websites using semantic data
🎯 Drive higher rankings through intelligent, entity-driven strategies

Entity Disambiguation

Entity disambiguation resolves ambiguous mentions to specific entities in a knowledge base—a critical challenge at scale.

Entity Disambiguator Example:

python

class EntityDisambiguator:

    def __init__(self, knowledge_base, embedding_model, similarity_threshold=0.82):

        self.knowledge_base = knowledge_base

        self.embedding_model = embedding_model

        self.similarity_threshold = similarity_threshold

        self.vector_index = self._build_vector_index()

    def disambiguate_entities(self, entity_mentions, context):

        disambiguated_entities = []

        for mention in entity_mentions:

            mention_embedding = self._create_contextual_embedding(mention, context)

            candidates = self._find_candidate_entities(mention, mention_embedding)

            if candidates:

                best_match = self._select_best_candidate(mention, candidates, context)

                if best_match[‘score’] >= self.similarity_threshold:

                    disambiguated_entities.append({

                        ‘mention’: mention,

                        ‘kb_entity’: best_match[‘entity’],

                        ‘confidence’: best_match[‘score’]

                    })

        return disambiguated_entities

    def _create_contextual_embedding(self, mention, context):

        context_window = self._extract_context_window(mention, context, size=200)

        marked_text = f”{context_window[‘left’]} [ENT] {mention[‘text’]} [/ENT] {context_window[‘right’]}”

        return self.embedding_model.encode(marked_text)

    def _find_candidate_entities(self, mention, embedding, max_candidates=5):

        similar_vectors = self.vector_index.search(embedding, max_candidates)

        candidates = [

            {‘entity’: self.knowledge_base.get_entity(vector_id), ‘score’: similarity}

            for vector_id, similarity in similar_vectors

        ]

        return candidates

Entity Classification and Typing

Advanced entity typing leverages hierarchical type systems (ontologies) for precise classification.

Entity Classifier Example:

python

class EntityClassifier:

    def __init__(self, type_hierarchy, classification_model):

        self.type_hierarchy = type_hierarchy

        self.classification_model = classification_model

    def classify_entity(self, entity, context):

        features = self._extract_classification_features(entity, context)

        type_probabilities = self.classification_model.predict_proba(features)

        consistent_types = self._enforce_type_hierarchy(type_probabilities)

        entity[‘types’] = [

            {‘type’: t_id, ‘confidence’: score}

            for t_id, score in consistent_types.items()

            if score >= 0.7

        ]

        return entity

    def _enforce_type_hierarchy(self, type_probabilities):

        consistent_types = {}

        sorted_types = sorted(type_probabilities.items(), key=lambda x: x[1], reverse=True)

        for type_id, probability in sorted_types:

            type_path = self.type_hierarchy.get_path(type_id)

            can_add = all(parent in consistent_types for parent in type_path[:-1])

            if can_add:

                consistent_types[type_id] = probability

                for parent in type_path[:-1]:

                    consistent_types[parent] = max(consistent_types.get(parent, 0), probability)

        return consistent_types

Entity-Based SEO

Schema Mapping: Translating Entities to Schema.org

Mapping extracted entities to schema.org types is a core challenge. A dynamic, rule-based schema mapper provides flexibility and control for programmatic markup.

Dynamic Schema Selection Framework:

  • Define mapping rules based on entity type, context, and confidence.
  • Automate logic is used to generate JSON-LD snippets for each page.
  • Validate and test schema output at scale.

python

class SchemaMapper:

    def __init__(self, mapping_rules, schema_registry):

        “””

        Initialize schema mapper

        Args:

            mapping_rules: Rules for mapping entity types to schema types

            schema_registry: Registry of schema.org types and properties

        “””

        self.mapping_rules = mapping_rules

        self.schema_registry = schema_registry

    def map_entities_to_schema(self, entities, document_metadata):

        “””

        Map entities to schema.org types and properties

        Args:

            entities: List of classified entities

            document_metadata: Additional document context

        Returns:

            Dictionary of schema.org objects

        “””

        schema_objects = {}

        # Map page-level schema

        schema_objects[‘page’] = self._map_page_schema(document_metadata)

        # Group entities by schema type

        entity_groups = self._group_entities_by_schema_type(entities)

        # Map each entity group to schema

        for schema_type, entity_group in entity_groups.items():

            schema_objects[schema_type] = [

                self._map_entity_to_schema_object(entity, schema_type)

                for entity in entity_group

            ]

        return schema_objects

    def _group_entities_by_schema_type(self, entities):

        “””Group entities by their corresponding schema type”””

        groups = defaultdict(list)

        for entity in entities:

            schema_type = self._get_schema_type_for_entity(entity)

            if schema_type:

                groups[schema_type].append(entity)

        return groups

    def _get_schema_type_for_entity(self, entity):

        “””Determine schema.org type for an entity based on mapping rules”””

        for rule in self.mapping_rules:

            if self._rule_matches(rule, entity):

                return rule[‘schema_type’]

        return None

    def _rule_matches(self, rule, entity):

        “””Check if a mapping rule applies to an entity”””

        if ‘entity_types’ in rule:

            entity_types = set(t[‘type’] for t in entity[‘types’])

            if not entity_types.intersection(set(rule[‘entity_types’])):

                return False

        if ‘context_constraints’ in rule:

            for constraint in rule[‘context_constraints’]:

                if not self._check_context_constraint(constraint, entity):

                    return False

        return True

    def _map_entity_to_schema_object(self, entity, schema_type):

        “””Map an entity to a schema.org object with appropriate properties”””

        schema_object = {

            ‘@type’: schema_type,

            ‘name’: entity[‘mention’][‘text’]

        }

        for property_mapping in self.mapping_rules.get_property_mappings(schema_type):

            property_value = self._extract_property_value(entity, property_mapping)

            if property_value:

                schema_object[property_mapping[‘schema_property’]] = property_value

        return schema_object

Schema Optimization Techniques

Key Approaches

  1. Property prioritization: Focus on high-impact schema properties.
  2. Context-aware property mapping: Map entity attributes based on page context.
  3. Schema interlinking: Connect related schema objects for increased semantic value.

Schema Optimizer Class

python

class SchemaOptimizer:

    def __init__(self, impact_metrics):

        “””

        Initialize schema optimizer

        Args:

            impact_metrics: Dictionary of schema property impact scores

        “””

        self.impact_metrics = impact_metrics

    def optimize_schema(self, schema_objects, optimization_level=2):

        “””

        Optimize schema objects for search impact

        Args:

            schema_objects: Dictionary of schema objects

            optimization_level: Level of optimization to apply (1-3)

        Returns:

            Optimized schema objects

        “””

        optimized = schema_objects.copy()

        # Apply property prioritization

        optimized = self._prioritize_properties(optimized)

        if optimization_level >= 2:

            # Apply schema interlinking

            optimized = self._interlink_schema_objects(optimized)

        if optimization_level >= 3:

            # Apply context-specific optimizations

            optimized = self._apply_context_optimizations(optimized)

        return optimized

    def _prioritize_properties(self, schema_objects):

        “””Prioritize high-impact schema properties”””

        prioritized = {}

        for key, objects in schema_objects.items():

            if isinstance(objects, list):

                prioritized[key] = [

                    self._prioritize_object_properties(obj)

                    for obj in objects

                ]

            else:

                prioritized[key] = self._prioritize_object_properties(objects)

        return prioritized

    def _prioritize_object_properties(self, schema_object):

        “””Prioritize properties within a schema object”””

        obj_type = schema_object.get(‘@type’)

        if not obj_type:

            return schema_object

        impact_scores = self.impact_metrics.get(obj_type, {})

        properties = list(schema_object.keys())

        properties.sort(key=lambda p: impact_scores.get(p, 0), reverse=True)

        prioritized = {‘@context’: ‘https://schema.org’}

        for prop in properties:

            prioritized[prop] = schema_object[prop]

        return prioritized

JSON-LD Generation and Implementation

Optimized JSON-LD Generation

python

class JsonLdGenerator:

    def __init__(self, schema_context=’https://schema.org’):

        “””

        Initialize JSON-LD generator

        Args:

            schema_context: Schema.org context URL

        “””

        self.schema_context = schema_context

    def generate_jsonld(self, schema_objects, minify=True):

        “””

        Generate JSON-LD from schema objects

        Args:

            schema_objects: Dictionary of schema objects

            minify: Whether to minify the output

        Returns:

            JSON-LD string

        “””

        jsonld = {‘@context’: self.schema_context}

        if len(schema_objects) == 1:

            key, obj = next(iter(schema_objects.items()))

            jsonld.update(obj)

        else:

            jsonld[‘@graph’] = []

            for key, objects in schema_objects.items():

                if isinstance(objects, list):

                    jsonld[‘@graph’].extend(objects)

                else:

                    jsonld[‘@graph’].append(objects)

        if minify:

            return json.dumps(jsonld, separators=(‘,’, ‘:’))

        else:

            return json.dumps(jsonld, indent=2)

    def validate_jsonld(self, jsonld_str):

        “””

        Validate JSON-LD structure and syntax

        Args:

            jsonld_str: JSON-LD string

        Returns:

            Tuple of (is_valid, errors)

        “””

        try:

            parsed = json.loads(jsonld_str)

            if ‘@context’ not in parsed:

                return False, [‘Missing @context field’]

            if ‘@type’ not in parsed and ‘@graph’ not in parsed:

                return False, [‘Missing @type or @graph field’]

            return True, []

        except json.JSONDecodeError as e:

            return False, [f’JSON syntax error: {str(e)}’]

Entity-Based SEO

Dynamic Deployment Strategies

Approaches for Large-Scale Schema Deployment

  1. Server-side rendering: Inject JSON-LD during page generation.
  2. Edge-side injection: Add schema at the CDN edge.
  3. Client-side augmentation: Enhance server schema with JavaScript.

Hybrid Example (JavaScript)

javascript

// Server-side base schema generation (Node.js example)

function generateBaseSchema(pageData) {

  const schemaGenerator = new SchemaGenerator();

  const baseSchema = schemaGenerator.generateBaseSchema(pageData);

  return `

    <script type=”application/ld+json”>

      ${JSON.stringify(baseSchema)}

    </script>

  `;

}

// Client-side schema augmentation

class SchemaAugmenter {

  constructor(config) {

    this.config = config;

    this.entityExtractor = new ClientEntityExtractor();

  }

  async augmentSchema() {

    const existingSchema = this.getExistingSchema();

    if (!existingSchema) return;

    const additionalEntities = await this.entityExtractor.extractFromDOM();

    const augmentedSchema = this.mergeSchemas(existingSchema, additionalEntities);

    this.updateDOMSchema(augmentedSchema);

  }

  getExistingSchema() {

    const schemaScript = document.querySelector(‘script[type=”application/ld+json”]’);

    if (!schemaScript) return null;

    try {

      return JSON.parse(schemaScript.textContent);

    } catch (e) {

      console.error(‘Error parsing existing schema:’, e);

      return null;

    }

  }

  updateDOMSchema(schema) {

    const schemaScript = document.querySelector(‘script[type=”application/ld+json”]’);

    if (schemaScript) {

      schemaScript.textContent = JSON.stringify(schema);

    } else {

      const newScript = document.createElement(‘script’);

      newScript.type = ‘application/ld+json’;

      newScript.textContent = JSON.stringify(schema);

      document.head.appendChild(newScript);

    }

  }

}

Performance Optimization for Large-Scale Entity Processing

Parallel Processing Architecture

Efficiently processing millions of pages requires distributed architectures.

python

class EntityProcessingCluster:

    def __init__(self, config):

        “””

        Initialize distributed entity processing cluster

        Args:

            config: Cluster configuration

        “””

        self.worker_count = config[‘worker_count’]

        self.batch_size = config[‘batch_size’]

        self.queue_client = QueueClient(config[‘queue_connection’])

        self.result_store = ResultStore(config[‘result_store_connection’])

    def process_content_batch(self, batch_id, content_items):

        “””

        Process a batch of content items with distributed workers

        Args:

            batch_id: Unique identifier for this batch

            content_items: List of content items to process

        “””

        tasks = self._create_tasks(content_items)

        task_ids = []

        for task in tasks:

            task_id = self.queue_client.enqueue_task(task)

            task_ids.append(task_id)

        return self._monitor_batch_progress(batch_id, task_ids)

    def _create_tasks(self, content_items):

        “””Split content items into balanced tasks”””

        tasks = []

        item_chunks = self._chunk_by_complexity(content_items, self.batch_size)

        for chunk_id, chunk in enumerate(item_chunks):

            tasks.append({

                ‘type’: ‘entity_extraction’,

                ‘items’: chunk,

                ‘priority’: 1,

                ‘timeout’: 300  # seconds

            })

        return tasks

    def _chunk_by_complexity(self, items, target_size):

        “””Create chunks balanced by processing complexity”””

        items_with_complexity = [

            (item, self._estimate_processing_complexity(item))

            for item in items

        ]

        items_with_complexity.sort(key=lambda x: x[1], reverse=True)

        chunks = [[] for _ in range((len(items) + target_size – 1) // target_size)]

        chunk_complexities = [0] * len(chunks)

        for item, complexity in items_with_complexity:

            min_idx = chunk_complexities.index(min(chunk_complexities))

            chunks[min_idx].append(item)

            chunk_complexities[min_idx] += complexity

        return chunks

Memory-Optimized Entity Storage

Efficient entity representation is critical for large-scale processing.
(Implementation details can be expanded as needed based on project requirements.)

python

class EntityStore:

    def __init__(self, config):

        “””

        Initialize memory-optimized entity store

        Args:

            config: Store configuration

        “””

        self.compression_level = config.get(‘compression_level’, 1)

        self.use_shared_strings = config.get(‘use_shared_strings’, True)

        self.string_intern_pool = {}

    def store_entity(self, entity):

        “””

        Store entity with memory optimization

        Args:

            entity: Entity object to store

        Returns:

            Entity ID

        “””

        # Optimize memory representation

        optimized = self._optimize_entity(entity)

        # Generate stable ID

        entity_id = self._generate_entity_id(optimized)

        # Store optimized entity

        self._store_optimized_entity(entity_id, optimized)

        return entity_id

    def _optimize_entity(self, entity):

        “””Apply memory optimization techniques to entity”””

        optimized = {}

        for key, value in entity.items():

            if self.use_shared_strings and isinstance(value, str):

                optimized[key] = self._intern_string(value)

            elif isinstance(value, dict):

                optimized[key] = self._optimize_entity(value)

            elif isinstance(value, list):

                optimized[key] = [

                    self._optimize_entity(item) if isinstance(item, dict)

                    else (self._intern_string(item) if isinstance(item, str) else item)

                    for item in value

                ]

            else:

                optimized[key] = value

        return optimized

    def _intern_string(self, string):

        “””Intern string to reduce memory usage through sharing”””

        if string in self.string_intern_pool:

            return self.string_intern_pool[string]

        if self.compression_level > 0 and len(string) > 64:

            compressed = self._compress_string(string)

            self.string_intern_pool[string] = compressed

            return compressed

        self.string_intern_pool[string] = string

        return string

Schema.org Integration Patterns

Progressive Schema Enhancement

For large-scale sites, a progressive enhancement approach maintains flexibility.

python

class ProgressiveSchemaEnhancer:

    def __init__(self, enhancement_levels):

        “””

        Initialize progressive schema enhancer

        Args:

            enhancement_levels: Configuration for enhancement levels

        “””

        self.enhancement_levels = enhancement_levels

    def enhance_schema(self, base_schema, page_data, level=1):

        “””

        Progressively enhance schema based on page importance

        Args:

            base_schema: Base schema object

            page_data: Page metadata and content

            level: Enhancement level (1-3)

        Returns:

            Enhanced schema

        “””

        enhanced = copy.deepcopy(base_schema)

        for current_level in range(1, level + 1):

            enhanced = self._apply_enhancement_level(

                enhanced,

                page_data,

                self.enhancement_levels[current_level]

            )

        return enhanced

    def _apply_enhancement_level(self, schema, page_data, level_config):

        “””Apply specific enhancement level to schema”””

        enhanced = schema.copy()

        if ‘properties’ in level_config:

            for property_config in level_config[‘properties’]:

                property_name = property_config[‘name’]

                property_value = self._extract_property_value(

                    page_data,

                    property_config

                )

                if property_value:

                    if ‘.’ in property_name:

                        self._set_nested_property(enhanced, property_name, property_value)

                    else:

                        enhanced[property_name] = property_value

        if ‘objects’ in level_config:

            for object_config in level_config[‘objects’]:

                new_object = self._create_enhancement_object(

                    page_data,

                    object_config

                )

                if new_object:

                    if ‘@graph’ not in enhanced:

                        enhanced[‘@graph’] = []

                    enhanced[‘@graph’].append(new_object)

        return enhanced

Schema Validation and Testing Framework

Robust Schema Validation

Robust schema validation prevents errors at scale.

python

class SchemaValidator:

    def __init__(self, schema_specs):

        “””

        Initialize schema validator

        Args:

            schema_specs: Schema specifications by type

        “””

        self.schema_specs = schema_specs

        self.validators = self._initialize_validators()

    def validate_schema(self, schema_object):

        “””

        Validate schema object against specifications

        Args:

            schema_object: Schema object to validate

        Returns:

            ValidationResult object

        “””

        schema_type = schema_object.get(‘@type’)

        if not schema_type:

            return ValidationResult(

                valid=False,

                errors=[‘Missing @type property’]

            )

        validator = self.validators.get(schema_type)

        if not validator:

            return ValidationResult(

                valid=True,

                warnings=[f’No validator available for type: {schema_type}’]

            )

        return validator.validate(schema_object)

    def _initialize_validators(self):

        “””Initialize validators for each schema type”””

        validators = {}

        for schema_type, spec in self.schema_specs.items():

            validators[schema_type] = SchemaTypeValidator(schema_type, spec)

        return validators

Implementation, Monitoring, and Analytics

Schema Performance Tracking

Measuring schema implementation impact requires specialized tracking.

python

class SchemaPerformanceTracker:

    def __init__(self, analytics_client):

        “””

        Initialize schema performance tracker

        Args:

            analytics_client: Client for analytics platform

        “””

        self.analytics_client = analytics_client

        self.tracking_dimensions = [

            ‘schema_type’,

            ‘page_type’,

            ‘property_coverage’,

            ‘entity_count’

        ]

    def track_schema_performance(self, page_id, schema_data, search_metrics):

        “””

        Track schema impact on search performance

        Args:

            page_id: Unique page identifier

            schema_data: Information about schema implementation

            search_metrics: Search performance metrics

        “””

        schema_metadata = self._extract_schema_metadata(schema_data)

        event = {

            ‘page_id’: page_id,

            ‘timestamp’: int(time.time()),

            ‘schema_metadata’: schema_metadata,

            ‘search_metrics’: search_metrics

        }

        self.analytics_client.track_event(‘schema_performance’, event)

    def _extract_schema_metadata(self, schema_data):

        “””Extract metadata from schema for analysis”””

        metadata = {

            ‘types’: self._extract_schema_types(schema_data),

            ‘property_count’: self._count_schema_properties(schema_data),

            ‘entity_count’: self._count_schema_entities(schema_data),

            ‘complexity_score’: self._calculate_complexity_score(schema_data)

        }

        return metadata

    def analyze_schema_impact(self, page_group, time_period):

        “””

        Analyze schema impact on search performance

        Args:

            page_group: Group of pages to analyze

            time_period: Time period for analysis

        Returns:

            Impact analysis results

        “””

        performance_data = self.analytics_client.get_performance_data(

            page_group,

            time_period,

            dimensions=self.tracking_dimensions

        )

        analysis = {

            ‘overall_impact’: self._calculate_overall_impact(performance_data),

            ‘type_specific_impact’: self._analyze_type_impact(performance_data),

            ‘property_impact’: self._analyze_property_impact(performance_data)

        }        return analysis

Facebook
Twitter
LinkedIn

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top